
Dynamic Graphs For Point Cloud Completion

Leron Julian
18-889 Final Project Report
Carnegie Mellon University
ljulian@andrew.cmu.edu

Abstract

Point clouds, commonly used to represent shapes and
scenes, are often incomplete due to low sensor resolution by
the imaging device or occlusion between the object and sen-
sor. As a result, performing further analysis on these incom-
plete point clouds results in sub optimal predictions. Many
works have tackled the issue of point cloud completion us-
ing a learning framework that directly predicts a complete
point cloud given an incomplete input while leaving it up
to the model to estimate the underlying shape of the in-
complete input. This project will investigate how adding
dynamic graphs into the learning pipeline better helps the
model understand the overall structure of the input and
leads to a more accurate reconstructed point cloud. Re-
sults from this project show that by adding dynamic graphs
within the learning pipeline leads to a more compact com-
pleted point cloud and better metric results.

1. Introduction
Point clouds, a scattered collection of points, can be ef-

ficiently used to represent shapes and objects in both 2D
and 3D. Point cloud data on real-world objects and scenes
can be recovered from devices such as a LiDAR sensor or
depth sensor and then be converted to other surface repre-
sentations to visualize scenes and objects in 3D. A common
limitation of using point clouds is that capturing real-world
data often results in missing points or ”gaps” in the point
cloud representation. This is often caused by occlusion be-
tween the scene and the sensor, lighting differences, noise,
or limited sensor resolution. These incomplete point clouds
will therefore result in poor or incorrect analysis such as
segmentation or classification as well as poor reconstruc-
tion in 3D.

Image inpainting, commonly used in 2D images, refers
to the process of filling-in missing data in a designated re-
gion of an image or object [2]. As shown in Figure 1 miss-
ing pixels (in black) are filled in with the correct pixel values
for the pixel locations.

Figure 1. a.) Ground truth image. b.) Image with missing pixel
values. c.) Inpainted image where missing pixels are filled with
assumed value.

However, for missing points in point cloud representa-
tions, inpainting, commonly referred to as point cloud com-
pletion, can be used as a method to fill points and complete
the cloud with a high order of accuracy. An example of
point cloud completion is shown in Figure 2.

Many works have tackled the issue of point cloud com-
pletion using a deep learning framework that directly pre-
dicts a completed point cloud given an incomplete input
while leaving it up to the model to estimate the underly-
ing shape of the incomplete input. My project hypothe-
sizes that by implementing a method to directly allow the
model to learn the underlying shape of the incomplete point
cloud will result in a better predicted point cloud as output.
Therefore, this project will investigate how adding dynamic
graphs into the learning pipeline better helps the model un-
derstand the overall structure of the input and leads to a
more accurate reconstructed point cloud.

2. Related Work
For the overall task of point cloud completion, 3 main

categories have been investigated: Geometry-Based Meth-
ods, Alignment-Based Methods, and Learning-Based Meth-
ods. In this project, I will be focusing on learning-based
methods for point cloud completion in which previous
works commonly used encoder-decoder models. A ma-
jor limitation to these methods however is that they do not
take into consideration the underlying shape/structure of the
point clouds which inhibits the generality of point cloud
completion, especially for real-world large scenes.

Zhang et. al [9] presented a view-guided solution for
the task of point cloud completion by taking the missing

Figure 2. Incomplete and Complete Point Cloud

crucial global structure information from an extra single-
view RGB image. Inferring the underlying shape of a point
cloud from an RGB image is not always feasible due to the
fact that RGB images are not always available in real-world
scenarios. Also, factors such as lighting differences can af-
fect objects in the RGB image which will in turn affect this
model.

Yuan et. al [8] tackled the task of point cloud comple-
tion through a novel Point Completion Network (PCN) that
directly operates on raw point clouds without any struc-
tural assumptions of the incomplete point cloud. Through
this encoder-decoder network, PCN is able to produce high-
quality coarse and dense point clouds given an incomplete
point cloud as input. The major limitation of this imple-
mentation is that PCN does not assume anything about the
underlying structure of the point clouds. I believe that tak-
ing the underlying shape of the incomplete input into con-
sideration will result in a better completed point cloud. As a
result, PCN will be used as my base network in which I will
add dynamic graphs into the learning pipeline to investigate
how adding these will better help the model understand the
overall structure of the input and lead to a more accurate
reconstructed point cloud.

3. Method
The methods for this project will incorporate a base

model with improvements to benefit the task of point cloud
completion.

3.1. Base Model

Given that PCN will be used as the base model for this
project, the fine details of the model can be read in their pa-
per [8]. However, the model takes as input an incomplete
point cloud X in 3D (x,y,z). Random points are removed
from the point cloud to create an incomplete point cloud
such that there are only 512 points in the input. The model
then produces 2 outputs: a coarse output (Ycoarse) with

Figure 3. Proposed network with k = 10 neighbors and k = 5
neighbors throughout.

Figure 4. Visualization of how dynamic graphs aggregates local
neighbor points.

m points and a dense output point cloud (Ydense) with n
points. For this project m = 1024 and n = 8192. The ben-
efit of this is that more dense point clouds can be predicted
which produces better predictions on point cloud analysis
tasks. As stated earlier, PCN does not make any assump-
tions about the underlying shape of the incomplete point
cloud in which this project will improve using dynamic
graphs into the PCN learning pipeline.

3.2. Dynamic Graphs

The dynamic graph implemented in this projected will
be based off of Dynamic Graph CNN for Learning on Point
Clouds [7] in which a directed graph G is used to repre-
sent a local neighborhood in the point cloud structure. G
can be represented as any neighborhood algorithm, how-
ever for this project k-nearest neighbor (k-NN) is used as
the directed graph. In the learning pipeline, channel-wise
aggregation is used on the edge features of on the graph. A
visualization is shown in figure 4. The whole idea behind
this is that instead of generating point features directly from
their embeddings in an MLP, the dynamic graph generates
edge features that describe the relationships between a point
and its neighbors.

3.3. Proposed Model

To this end, my proposed model will incorporate these
dynamic graphs throughout the learning pipeline of the base
PCN network. A figure of this pipeline is visualized in
figure 3 with k = 10 neighbors within the first dynamic

graph addition and k = 5 neighbors within the second dy-
namic graph addition. All other implementations of the
PCN model remains the same with m = 1024 points for
(Ycoarse) and n = 8192 points for (Ydense)

3.4. Naive Model

The naive model for this project is used to compare the
results on point cloud completion on a simple model and to
analyze how the predicted complete point cloud is affected
with the addition of dynamic graphs throughout the learning
pipeline. The naive model is modeled as a simple encoder-
decoder network of shared multi-layer perceptrons (MLPs)
[3] with the same channel dimensions as PCN.

4. Experiments
A few experiments have been analyzed on this project to

test how adding dynamic graphs improves the task of point
cloud completion.

4.1. Data

For this project, the datasets that will be used for training
and testing is the Shapenet [1] dataset and real-world point
clouds captured from my iPhone 13 Pro LiDAR sensor. Al-
though the ShapNet dataset contains numerous object cate-
gories, only 3 were chosen. For the real world data captured
from an iPhone, 3 single objects were tested: an office chair,
a piano, and a shoe box.

4.2. Loss Function

For this project, the loss function will be the difference
between the predicted point cloud and the ground truth
point cloud. Due to the nature of point clouds, the loss
function needs to be invariant to the point cloud permuta-
tions. Therefore, Chamfer distance (CD) [4] is used as the
loss function between the predicted point cloud P1 and the
ground truth point cloud P2. The equation for CD is ex-
pressed as the equation:

CD (P1, P2) =
1

|P1|
∑
x∈P1

min
y∈P2

∥x− y∥2

+
1

|P2|
∑
y∈P2

min
x∈P1

∥y − x∥2
(1)

Therefore, the complete loss function for training is:

L (Ycoarse, Ydense, Ytruth) = CD
(
Ycoarse, Ỹtruth

)
+α CD (Ydense, Ytruth)

(2)

Where Ỹtruth is the predicted coarse point cloud and α
is a hyper-parameter that determines how much does the
dense prediction influences the overall loss.

Figure 5. CD results on ShapeNet data.

Figure 6. F-Score results on ShapeNet data.

4.3. Training Details

The models were trained and tested on the shapenet
dataset with further testing on real-world data from the
iPhone 13 Pro LiDAR sensor. The model was trained on
3 object categories: airplane, chair, and vessel and tested
on the same categories on unseen data. The models were
trained for 400 epochs with Adam optimizer and a learning
rate of 0.0001 with a decay rate of 0.7 and a batch size of
32.

5. Results
The results of how adding dynamic graphs within the

learning pipeline will be analyzed based on qualitative re-
sults as well as quantitative results in terms of CD and F-
score.

5.1. ShapeNet Results

Again, the models were trained across 3 categories
within the ShapeNet dataset: airplane, chair, and vessel. In
terms of CD, a lower CD value is better while a higher F-
score is better. As shown in figures 5 and 6 adding k-NN dy-
namic graphs to the base model allowed the predicted com-

Figure 7. CD results on real-world data.

Figure 8. F-Score results on real-world data.

plete point cloud to achieve better metric results compared
to the other models. Even adding k-NN dynamic graphs to
the naive model resulted in better quantitative results. Also,
to test the results on another neighboring function, ball-
query [5] was used which looks at points within a certain
radius as opposed to a certain number of k points. How-
ever, I believe my implementation of the ball-query algo-
rithm may have been incorrect which resulted in very bad
predictions. Qualitative results are shown in figures 9-15.
It can clearly be seen that adding dynamic graphs to the
learning pipeline resulted in a better complete point cloud
compared to previous works.

5.2. Real-World Results

Results on real-world data captured from an iPhone Li-
DAR system is used which includes single objects of an
office chair, a piano, and a shoe box. Random points are
selected and removed from the input such that there are 512
points used in the incomplete point cloud as input. Results
on the real-world dataset based on CD and F-Score is shown
in figure 7 and 8. Based on CD, the results vary on category
on which model performs the best. Again, these models
are only trained on 3 object categories on synthetic data

which means that they will not always generalize well on
real-world data across different categories. Also, my cap-
turing of objects with my iPhone LiDAR was not the great-
est due to the fact that it is not as easy to capture a LiDAR
scan of a scene as it is with a regular RGB image. Further
data capturing and training on more data should ultimately
alleviate this issue.

6. Conclusion
Overall, this project investigated how adding dynamic

graphs into the learning pipeline better helps the model un-
derstand the overall structure of the input and leads to a
more accurate reconstructed point cloud when given an in-
complete point cloud as input. Results from this project
show that by adding dynamic graphs within the learning
pipeline leads to a more compact completed point cloud
and better metric results than other methods that leaves it
up to the model to estimate the underlying geometry of the
object. Although my model did not perform well on real-
world data, I believe that it would perform better given bet-
ter data to train on. Also, it would be interesting to inves-
tigate how other dynamic graph implementations such as
KPConv [6] affects learning a completed point cloud.

Figure 9. Input incomplete point cloud.

Figure 10. Ground truth complete point cloud.

Figure 11. Naive prediction.

Figure 12. Naive prediction with k-NN Dynamic Graph.

Figure 13. Base model prediction

Figure 14. Base model prediction with k-NN Dynamic Graph.

Figure 15. Base model prediction with ball query Dynamic Graph.

References
[1] Shapenet. https://shapenet.org/. Accessed: 2022-

03-14. 3
[2] Image inpainting. pages 315–316, 2006. 1
[3] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas.

Pointnet: Deep learning on point sets for 3d classification and
segmentation. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 77–85, 2017. 3

[4] Haoqiang Fan, Hao Su, and Leonidas Guibas. A point set
generation network for 3d object reconstruction from a single
image. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2463–2471, 2017. 3

[5] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017. 4

[6] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas Guibas.
Kpconv: Flexible and deformable convolution for point
clouds. In 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 6410–6419, 2019. 4

[7] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Trans. Graph.,
38(5), oct 2019. 2

[8] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and
Martial Hebert. Pcn: Point completion network. In 2018 In-
ternational Conference on 3D Vision (3DV), pages 728–737,
2018. 2

[9] Xuancheng Zhang, Yutong Feng, Siqi Li, Changqing Zou,
Hai Wan, Xibin Zhao, Yandong Guo, and Yue Gao. View-
guided point cloud completion. In 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 15885–15894, 2021. 1

https://shapenet.org/

	. Introduction
	. Related Work
	. Method
	. Base Model
	. Dynamic Graphs
	. Proposed Model
	. Naive Model

	. Experiments
	. Data
	. Loss Function
	. Training Details

	. Results
	. ShapeNet Results
	. Real-World Results

	. Conclusion

