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1. Introduction & Background

Capturing and rendering a 3D photo that can be viewed
from any viewpoint has drawn increasing interest in both
the vision and graphics communities. While storing con-
tinuous viewpoints of a 3D scene is infeasible, capturing
sparsely sampled viewpoints and synthesizing new view-
points in between in real time becomes an intriguing solu-
tion. In this project, we are specifically interested in a scene
with transparent objects. Given two set of 2D images cap-
turing transparent objects and its corresponding background
from different directions, our goal is to reconstruct shape of
transparent objects, which can be used to render new view-
points that are both photorealistic and faithful to the real
world geometry.

Traditional view synthesis methods can be categorized
into two types — geometry methods and image-based ren-
dering [4]. The first class uses N-view geometry to re-
construct the geometry and appearance of a 3D scene and
renders new views through camera projection. But recon-
structing 3D scenes through reprojection is generally hard
in real world scenarios. The second class of methods gen-
erate new views through compositing neighboring views
without explicitly reconstruct the 3D scene. These meth-
ods generates artifacts around the fine texture in the im-
ages. More recently, Neural Radiance Field (NeRF) [5]
sparkles a new stream of works that achieve astonishing
results. They propose to implicitly represent 3D scenes
as a mapping function that maps viewing direction and
volume coordinates to volume density and colors, and
then use classic volume rendering to synthesize a new im-
age. Code is provided online: https://github.com/
leronjulian/16822_Project

2. Motivation

High quality 3D scans and novel view synthesis have
various modern applications in modeling technology. The
main advantage is that the image of the object can be ren-
dered as if viewed from a different camera location and
lighting position. As a result, these renders can be used
not only to model 3D scenes but for depth maps, mixed-
reality applications, creating 3D meshes, and capturing a
360◦ scene with real data. However, there are limitations to
current methods such as capturing transparent materials, en-

forcing geometrically accurate image transformations, and
the numerous amounts of images needed for these 3D mod-
els. As a result, the impact of our project is proposing vari-
ous solutions and improvements to the traditional NeRF.

3. Prior Works
NeRF, as stated before, is a current state of the art

method for novel view synthesis that optimizes a radiance
field represented as a mulit-layer perceptron (MLP) using
sparse images. The MLP estimates radiance at 3D voxels
by taking in as input - the 3D location and viewing direction
of the camera and estimates the color and density of a pixel
location. NeRF works very well at reconstructing complex
scenes and objects with high fidelity mainly when these ob-
jects are non-lambertion, diffuse surfaces. NeRF fails when
reconstructing transparent objects due to the fact that when
NeRF casts a ray from the camera through a pixel onto the
scene, it does not take into consideration the properties of
the transparent object such as refraction. This becomes the
basis of our project.

Recently, there have been numerous methods to improve
on the limitations of NeRF. Using NeRF to capture non-
rigid scenes such as using a front-facing cellphone camera
to use ”selfies” to reconstruct the human face will fail due
to the non-rigid motion of humans between image captures
along with the fine detail such as hair which are hard to re-
construct using NeRF. Deformable Neural Radiance Fields
or ”Nerfies” [6] improves reconstruction of non-rigid scenes
by estimating a volumetric deformation field that warps
scene points to the canonical 5D NeRF.

To use NeRF to reconstruct transparent objects, Dex-
NeRF [2] uses a transparency aware method that searches
the first sample along a ray for which a value σ is greater
than some threshold to compute a depth map for the scene.
To assist in representing the transparent objects, light is
added to the scene to create more specular reflections on
the transparent object due to the fact that NeRF does well at
handling view-dependent light synthesis. This allows Dex-
NeRF to capture depth of almost all transparent objects bet-
ter than vanilla NeRF.

Opposed to using NeRF, Neural 3D Reconstruction of
Transparent Shapes [3] uses a physically motivated deep
network to reconstruct transparent shapes from a few un-
constrained images that yields high quality 3D reconstruc-
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tions that closely match scanned ground truth images.

4. Proposed Solutions
This leads us into our proposed solutions to improve tra-

ditional NeRF for novel view synthesis of transparent ob-
jects.

4.1. Shape from distortion

We propose shape from distortion by initially using a
synthetic dataset consisting of background and distorted im-
ages. For this, we use the rendering program Blender to
create a synthetic dataset of 2 main image categories. The
first is transparent objects that are placed on a scene with
some background which has some distortion in the trans-
parent regions due to refraction. Then, we have that same
background with the object not in the scene. Using a deep-
net, we train the model with the scene inputs and output the
depth-map for that scene. For the model we use a simple
UNet.

Sample images are shown in 1. For each captured frame,
the transparent objects are rotated or shifting randomly
throughout the scene to add variation when training the
model. The model is trained on a total of 5 unique ob-
jects and 10 unique backgrounds for 339 frames. Therefore,
in total our training dataset includes 1695 images. At test-
ing time, a synthetic or real image of a scene that includes
the transparent object is captured, along with the object re-
moved. The model then outputs the predicted depth map
used for shape refinement.

4.2. Shape refinement

Given a set of depth maps corresponding to camera
poses, the 3D scene can be reconstructed using non-linear
least squares. Here, the point-to-plane iterative closest point
(ICP) method is used to register the point clouds. Standard
ICP begins with a reference (stationary) point cloud, and
a template point cloud and iteratively solves for a similarity
transformation that minimizes the sum of distances between
the nearest neighbors of all points in the template cloud and
the reference cloud. Standard ICP works well for fully over-
lapping point clouds, but some modifications were made for
this case wherein clouds will only overlap partially when
registered. Optimizing over all points favors solutions that
colocate the cloud’s centroids. We use a modified version
of ICP via 1) a distance threshold for nearest neighbor sec-
tion [7], and 2) a point-to-plane objective modifier to exploit
point cloud structure [1].

The maximum distance threshold dmax excludes nearest
neighbors from the objective cost that exceed the thresh-
old. This encourages registration of small-scale cloud fea-
tures and limits the magnitudes of similarity transforma-
tions. Choosing dmax has a strong effect on convergence
rates and solutions. To avoid tuning this parameter, our

implementation chooses dmax such that 25% of template
cloud points are included in each optimization loop. The
point-to-plane variant attempts to align planar surfaces by
computing the inner products of errors with local normal
vectors of the reference cloud. This is helpful when the
scene has well-defined structure. The algorithm we used is
shown in Algorithm 2 where the Levenberg–Marquardt al-
gorithm was used in conjunction with the exponential map
to constrain T to valid similarity transformations.

Algorithm 1 Point Cloud Registration

Require: N depth maps D = {D(1), ..., D(N)} rendered
using the learned neural representation.
input: Two depth maps: D,D′ Initial transformation
T ∈ R4×4

output: Transformation T which aligns two point clouds
C,C ′.
C = {C(1), ..., C(N)} ← Backproject(D)
Choose distance threshold dmax used to identify out-
liers when computing nearest neighbor distances between
point clouds.
while not converged do

for j ← 1toN do
mj ← NearestNeighborInC(T · C ′)
if ∥mj − T · c′j∥2 < dmax then

wj ← 1
else

wj ← 0
end if

end for
T ← argminT

∑
j wj∥nj · (mj − T · c′j)∥22

end while

where nj is the surface normal at the point mj .

4.3. Virtual camera alignment using NeRFs

In real world scenario, we need to obtain a pair of back-
ground and object images of the same camera pose and ob-
tain multiple pairs from different viewpoints. In this project,
we fix the camera poses for the object scene, and compute
corresponding backgrounds through virtual cameras.

Specifically, We capture N viewpoints of a background
scene IB = {I(1)B , .., I

(N)
B } and M viewpoints of transpar-

ent objects with the same background IO = {I(1)O , .., I
(N)
O }

with the same camera. Note that the poses in two sequences
are chosen freely and are not the same. We keep IO as ref-
erence viewpoints and generate virtual background view-
points ÎB . This is achieved by training a NeRF HB(·) on
background scene using IB , and querying specific view-
points fromHB(·).

One caveat of this approach is that camera poses of the
two scenes are estimated separately and do not share the



Figure 1. Sample synthetic images. Left-to-right: Transparent object with background. Background only without transparent object.
Associated ground truth depth map.

Figure 2. 1a,2a: Input images with learned transformation using the Levenberg–Marquardt algorithm for ideal, synthetic and learned
depth maps respectively; 1b,2b: registered point clouds. Mesh registration for two poses from the synthetic image dataset shows the ICP
algorithm attempts to align the cups for 25th precentile of points’ nearest neighbors. However, background depth differences are too large
for them to influence the solution. The algorithm performs worse on learned depth maps due to reduced quality and artifacts that appear at
shallow depths.

same world coordinate, thus it is necessary for us to reg-
ister world coordinates beforehand. The algorithm is sum-
marized in Table 2. We first estimate camera parameters
and sparse 3D points using SfM package COLMAP. As is
shown in the left column in Figure 3, it gives us camera in-
trinsic matrix K, two sets of camera poses [R

(i)
B |t

(i)
B ], i =

1...N and [R
(j)
B |t

(j)
B ], j = 1...M , and two sets of sparse

3D points PB , PO. Since two scenes share the same back-
ground, we can find a subset of 3D point correspondences
QB ∈ PB , QO ∈ PO and register them. To find 3D point
correspondence, we compute 2D point correspondence us-
ing SIFT from two images and track 3D points that projects
to these 2D points. Once we have QB , QO, we estimate a
transformation R, t such that QB = R ∗ QO + t as illus-
trated in right column in Figure 3. The transformation can
be solved by minimizing a least square,

min

n∑
i=1

||Q(i)
B −R ∗Q(i)

O − t||2.

Rotation and translation can be computed by the following,

F = (QB − Q̄B)(QO − Q̄O)
T

F = UΣV T

R = V UT

t = Q̄B −R ∗ Q̄O

Next we apply the estimated transformation R, t to points
and cameras in the object scene so that they are under the
same world coordinate as the background scene.

P ′
O = RPO + t

M
(i)′

O = M
(i)
O

[
R t
0 1

]−1

We use the registered camera projection matrices M
(i)′

O

to query background NeRF HB and obtain N virtual
background views I ′B . I ′B , IO form N pairs of back-
ground/object images that can be used for shape reconstruc-
tion as specified in Section 4.1 and 4.2. Figure 4 shows five



Figure 3. Procedure of registering world coordinates of two
scenes. Left column shows COLMAP estimation results. Right
column shows a set of point correspondences that need to be
aligned by R, t.

registered image pairs from a checkboard background with
glass cup.

Algorithm 2 World coordinate registration

Require: N view images IB = {I(1)B , ..., I
(N)
B } captur-

ing the background scene, and M view images IO =

{I(1)O , ..., I
(N)
O } capturing transparent objects with the

same background.
Ensure: Both scene is captured by the same camera with

the same intrinsic matrix K.
1. Use shape from motion to recover camera intrinsics,
camera poses, and a sparse set of 3D points for both set
of images. K, [RB |tB ], [RO|tO], PB , PO.
2. Find point correspondences between two sets of 3D
points QB , QO.
3. Estimating rotation and translation between them
QB = R ∗QO + t.
4. Apply transformation R, t to points and camera poses
in the object scene, so that the object scene share the same
world coordinate as the background scene.

5. Results
Single-view depth estimation. Figure 5 presents sample
images of predicted depth maps given a scene and its as-
sociated background. As the images display, our network
does an adequate job at producing depth maps for trans-
parent objects given unseen images. We attribute adequate

results due to the small amount of training data fed into our
model and a lack of complexity on the model and inputs.
Virtual camera alignment. Figure 4 showcase five real-
captured transparent objects and corresponding background
synthesized by virtual cameras. The alignment is reason-
ably robust. Figure 6 presents three pairs of real-captured
cup on the floor, synthesized pure background images, and
depth prediction. Virtual background is observing from the
same camera rotation as in reference frame, but the transla-
tion estimation is offset by a small amount due to the tex-
tureless background. The depth prediction on real-captured
images are less desired compared to simulated ones. This
can be due to the discrepancies between simulated data and
captured data, such as noise distribution, reflective proper-
ties of material, shape of transparent object, and etc. These
discrepancies can be handled with more photorealistic sim-
ulation and a marginally larger dataset. Due to the limited
time of a course project, we would like to list these modifi-
cations as future plans.

6. Challenges
Single-view depth estimation. For single-view depth es-
timation, the main challenge that we faced was producing
concise accurate depth maps. We attribute this to the fact
that our model was too simple for this task. We did not add
any regularization or modifications to the inputs or models
for more accurate depth prediction.

7. Conclusion
The goal of this project is to reconstruct shape of trans-

parent objects. Our key insight is that a transparent object
refracts light and reveals its shape by distorting the back-
ground. We propose a multiview reconstruction algorithm
by leveraging single-view depth prediction from a back-
ground/object image pair and bundle adjusting estimation
among multiple viewpoints. We also propose a camera reg-
istration method by synthesizing virtual viewpoints from
NeRF for background scene. We achieve reasonable per-
formance on simulated data.

References
[1] Y. Chen and G. Medioni. Object modelling by registra-

tion of multiple range images. Image and vision computing,
10(3):145–155, 1992. 2

[2] J. Ichnowski*, Y. Avigal*, J. Kerr, and K. Goldberg. Dex-
NeRF: Using a neural radiance field to grasp transparent ob-
jects. In Conference on Robot Learning (CoRL), 2020. 1

[3] Z. Li, Y.-Y. Yeh, and M. Chandraker. Through the looking
glass: Neural 3d reconstruction of transparent shapes. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1262–1271, 2020. 1

[4] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalan-
tari, R. Ramamoorthi, R. Ng, and A. Kar. Local light field



Figure 4. Samples of real-captured background/object images. Top row shows object images captured from four different viewpoints.
Bottom row shows background images generated by NeRF with corresponding camera poses.

Figure 5. Predicted Depth maps Left-to-right: Transparent object
with background. Background only without transparent object.
Predicted depth map.

Figure 6. Virtual camera registration and depth prediction.
From-left-to-right: real-captured glass cup with background,
background generated by NeRF, and predicted depth map.
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