
Color-Filtered Aperture for Image Depth and Segmentation

Leron Julian
Carnegie Mellon University

Computational Photography Fall 2020 - Final Project
ljulian@andrew.cmu.edu

Abstract

From a single captured image, depth can be computed
through the use of a red, green, and blue (RGB) colored
aperture placed in the lens of a DSLR camera. Due to the
misalignment of each plane, a different wavelength causes
a shift disparity in each channel in which depth can be
computed. This allows object separation between fore-
ground and background through alpha matting for many
post-capture image editing techniques.

1. Introduction

Various depth estimations techniques have been re-
searched in the recent years for a variety of applications
including 3D reconstruction and modeling, post-editing af-
fects, and refocusing. However, many of these techniques
involve using a multi-camera setup such as in the case of
stereo vision and some lightfield-plenoptic cameras. Al-
though effective, these camera setups are not practical for
numerous reasons. For example, capturing a scene at differ-
ent positions in which the object is non-moving may not al-
ways be obtainable. Also, plenoptic imaging systems can be
clunky, large, and very expensive. The goal of this project
is to develop an inexpensive, compact solution that can cap-
ture depth from a single capture. This project uses an RGB
color filter placed inside of the aperture of a DSLR lens to
compute depth from color misalignment. The position of
the color filter [Figure 1] is oriented in such a way that an
object that is farther from the focus depth will have a right-
shift in the red channel, an up-shift in the green channel,
and a left-shift in the blue channel. From this color mis-
alignment, image depth from a single capture can be com-
puted. This also enables segmentation and separation of
foreground and background for an object in focus through
alpha matte optimization.

Figure 1: Color-Filter aperture set-up and orientation in a
DSLR Lens.

2. Previous Work
Coded Aperture Several research studies have experi-

mented with placing various masks inside of the aperture of
camera lenses with the purpose of deconvolution and depth
from defocus such as in [3].

Color-Filtered Aperture The original idea of utilizing
color-filtered apertures in imaging systems was proposed
by [1]. This original method estimated disparities by using
a squared intensity difference measure for high-pass filtered
images. Although effective, their solution was not portable
and cannot be utilized in modern day imaging systems to
compute depth from misalignment in a single image cap-
ture.

3. Color-Filtered Aperture
In this project an RGB color filter is placed inside of the

aperture of a DSLR lens to compute depth from color mis-
alignment. The position of the color filter is oriented in such
a way that an object that is farther from the focus depth will
have a right-shift in the red channel, an up-shift in the green
channel, and a left-shift in the blue channel. These shifts are
ultimately due to geometric shift and not chromatic aberra-
tion. This is better demonstrated with a red and green 2-
channel color filter example in [Figure 2]. The aperture is
placed in such a way that its optical center aligns with the
X and Y axes of the image sensor.

The color filter used for this project was an inexpensive
color correction lighting gel that was cut into squares and

1

Figure 2: How colors get misaligned.

stuck together using a circular cutout from a cardboard box
and placed in the orientation shown in [Figure 1]. The lens
for this project used was a Canon EF 50mm f/1.8 lens that
was disassembled in which the color-filtered aperture was
placed on the aperture of the lens. The lens is attached to a
Canon T5 body. [Figure 4] shows an image captured from
the RGB color-filtered lens set up discussed in this section.

4. Depth Estimation
After capturing an image with the proposed set-up men-

tioned in section 3, image depth can now be computed by
estimating the disparity between the shifted RGB planes.
Let d be the hypothesized disparity at pixel (x, y) between
the 3 RGB planes: Ir, Ig , and Ib. Therefore, due to the mis-
alignment shifts mentioned in the previous section, we need
to measure the quality of a match between: Ir (x+ d, y),
Ig (x, y − d), Ib (x− d, y). These 3 values are represented
at 3 different wavelengths and therefore it cannot be ex-
pected that these planes have similar intensities. However,
proposed by [5] colors in un-shifted images captured by
a regular camera form an elongated clusters when plotted
in 3D space. As the disparity between the RGB chan-
nels increase, the clusters become less elongated and more
isotropic. Therefore, by using a select number of pixels
within a certain window of an image w (x, y) belonging to
one cluster, the magnitude of the cluster can be used as a
correspondence measure. This can ultimately help solve for
the true disparity d.

Further, with a hypothesized disparity d, consider a set
of pixels within a certain window w (x, y) of the image as:
SI = {(Ir (s+ d, t) , Ig (s, t− d) , Ib (s− d, t))|(s, t) ∈
w (x, y)} Therefore, by minimizing the color alignment
measure below, an optimal disparity d can be obtained:

L(x, y; d) =
λ0λ1λ2
σ2
rσ

2
gσ

2
b

Where λ0λ1λ2 are the eigenvalues of the 3x3 covari-
ance matrix Σ and σ2

rσ
2
gσ

2
b are the diagonal elements of Σ.

Therefore, asL gets smaller, the clusters become more elon-
gated and the RGB components are correlated meaning that
the disparity d between the planes are smaller. Adversely, as
L increases, so does d meaning that the RGB components
are less correlated and the clusters become more isotropic.

4.1. Color Lines Model

Below in [Figure 3] is a visual of the color lines model
from a sample image captured from a regular lens with a
true disparity of d = 0. A small window of pixels (out-
lined by the red box) is taken as a sample cluster. Plot-
ting the window in the RGB space with a true disparity of
d = 0, shows that the cluster is more elongated with a low
color alignment measure L. As d is increased, the cluster
becomes more elongated and L increases as well meaning
that the RGB planes are less correlated

Now, by using the color alignment measure, the dispar-
ity d that minimizes L(x, y; d) at each pixel (x, y) can be
used to ultimately find the optimal match between the RGB
planes to obtain depth at each pixel. [Figure] shows a sam-
ple computed depth map after searching for an optimal d.

5. Matting
The process of Matting allows the separation between

the foreground and background of the object in focus. It
involves the process of solving for the foreground opacity
α(x, y) and a pixel (x, y). This is given by the matting
equation:

I(x, y) = α(x, y)F(x, y) + (1− α(x, y))B(x, y)

Where I(x, y) is the image composed of the foreground
component F(x, y) and background component B(x, y).
It can be assumed that α(x, y) is aligned between the
RGB planes. Based on the observed image I Solving this
equation becomes an under-constrained problem because
we have 3 knowns: Ir, Ig , Ib and 7 unknowns: α, Fr,
Fg , Fb, Br, Bg , Bb at each pixel (x, y). Therefore, to
obtain further constraints on this problem a trimap can
be used, coming from the computed depth map in the
previous steps. A trimap, shown in [Figure 4] has 3
regions: a known region which is strictly foreground, a
region which is strictly background and an unknown region
which consists of pixels that are in between the foreground
and background regions.The difference in misalignment
between the foreground and background can be then used
to optimize the matte to obtain a region with a very small
unknown to tightly segment the image between foreground

2

and background.

d = 0, L = 0.02

d = 3, L = 0.66

d = 5, L = 0.75

Figure 3: Cluster of pixels within the window outlined with
the red square.

Algorithm 1: Matte Optimization Algorithm
Initialization

1. Construct a trimap from the disparity.

2. Find an initial matte α based on the trimap.

3. Obtain foreground and background disparity maps dF
and dB

while Not Converged do

1. Estimate foreground and background color Fn, Bn
based on the current α

2. Compute consistency measures CFn
and CBn

3. Update αn+1 based on CFn
and CBn

end

5.1. Matte Optimization Flow

To optimize matte in an iterative method to obtain the
optimal segmentation between the foreground and back-
ground, various consistency methods are used based on the
Matte Optimization Algorithm [2] shown in Algorithm 1.
The initial step for initialization divides the image into fore-
ground and background by thresholding the depth map to
create a trimap. The initial α can then be computed from
the current trimap. The initial α is computed using a method
proposed by [4]. This initial alpha does not do a great job at
separating the image between foreground and background
in the unknown regions as shown in [Figure 4]. There are
many artifacts from the background in the initial matte that
should not be included that comes from where the fore-
ground and background colors are similar.

In the iterative steps, first the foreground and background
colors are estimated using the current α by minimizing a
quadratic cost function based on the matting equation with
an added smooth constraint:

∑
(x,y)

||I(x, y)−αn(x, y)Fn(x, y)−(1−αn(x, y))Bn(x, y)||2

The estimated Fn and Bn have the errors in the same lo-
cation as αn and the regions of these errors can be detected
by measuring how consistent the estimated colors are with
the foreground and the background disparity maps dF (x, y)
and dB(x, y). Then the corrected αn in those regions are
updated to update the current αn to αn+1 until convergence
when the difference between αn and αn+1 is very small.

3

5.2. Consistency Measures For Matte

The same approach as using the colors lines model
as a correspondence measure can be used in this
approach of finding an optimal matte. Utilizing
a small window of pixels in the foreground im-
age F(x, y) as a set of pixels as SF (x, y; d) with
an estimated disparity d, it can be expressed as:
SF = {(Fr (s+ d, t) , Fg (s, t− d) , Fb (s− d, t))|(s, t) ∈
w (x, y)} Therefore, the foreground color lines model error
can be expressed as:

eF (x, y; d) =
1

N

N∑
i=1

l2i

eB(x, y; d) =
1

N

N∑
i=1

l2i

Where N = |SF (x, y; d)|, li is the distance of the i-th
color within the window of pixels SF (x, y; d) from a line
fitted to the cluster of pixels. This approach is to examine
if colors within the window SF (x, y; d) fit the colors lines
model. As a result as eF (x, y; d) gets larger, the disparity
d becomes large as well meaning that it is not the correct
disparity. These equations are equally represented for the
background image B(x, y) as well.

The color lines model error can be decomposed further
into a simpler equation. For the foreground case, by letting
ci be the i-th color in the set of pixels in the foreground
pixel window SF (x, y; d), with µ being the mean color, v0
a unit vector of the fitted line, we can get the distance li of
a point ci from the line as:

l2i = |ci − µ| − ((ci − µ)T v0)2

The average of the first term, |ci − µ|, is the variance,
which can be expressed as:

1

N

N∑
i=1

|ci − µ| = σ2
r + σ2

g + σ2
b

The average of the second term, ((ci − µ)T v0)2, will
equal to:

1

N

N∑
i=1

((ci−µ)T v0)2 = vT0

(
1

N

N∑
i=1

(ci − µ)(ci − µ)T

)
v0

= vT0 Σv0 = vT0 (λ0v0) = λ0

Therefore, by the definitions of the covariance matrix Σ
of the set of pixels in a window of the foreground image
SF (x, y; d) and the eigenvector v0, the color lines model
error can be expressed as:

eF (x, y; d) = σ2
r + σ2

g + σ2
b − λ0

The same equations can be applied to the color models
error for the background image eB(x, y; d) as well. How-
ever, estimation of the background disparities are are larger
than foreground disparities and as a result eB(x, y; d) is dis-
counted by 0.9.

Now, the color consistency measures can be derived by
using the two color models error line model eF (x, y; d) and
eB(x, y; d) along with the two possible disparities dF (x, y)
and dB(x, y) at each pixel (x, y) in the unknown region:

CF (x, y) = exp{eF (x, y; dF)− eF (x, y; dB)

ks
}

CB(x, y) = exp{eB(x, y; dB)− eB(x, y; dF)

ks
}

Where ks is a scale parameter. This consistency
equation considers the shifted disparity within a given
window to compute the color lines model error. If the
estimated foreground color Fn around (x, y) contains the
true background color, then CF (x, y) will be large around
that region because the color lines model error eF (x, y; dF)
for the foreground image with the foreground disparity
dF will be large while eF (x, y; dB) for the background
disparity dB will be small. These same principles can be
applied to the background consistency measure CB(x, y).

5.3. Solving for Matte

This next subsection will discuss how to solve for
the next iteration of matte αn+1(x, y). α(x, y) can be
solved using as a soft-graph labeling problem similar to
[6]. Each pixel in the α(x, y) image can be represented
as a node in the graph where each pixel has associated
data weights for the foreground and background, along
with edge weights. The data weights for the foreground
WF (x, y) pulls α towards 1 while the data weights for the
background WB(x, y) pulls α(x, y) towards 0. The edge
weights We(x0, y0;x1, y1) enforce a spatial smoothness to

4

Figure 4: (TOP - From left to right): Captured Image and corresponding Red, Blue, and Green Channels.
(BOTTOM - From left to right): Corresponding depth map, trimap, initial matte, optimized matte.

create a tight smooth bound between the foreground and
background alpha values. The edge weights are computed
using the Matting Laplacian method [4]. This can then
all be solved as a sparse linear system while ensuring that
α(x, y) remains within the range [0, 1].

The iterative step of Algorithm 1 updates the data
weights WF (x, y) and WB(x, y) according to the consis-
tency measures CFn

(x, y) and CBn
(x, y) as:

WFn
= kααn(x, y) + kc (CBn

(x, y)− CFn
(x, y))

WBn
= kα(1− αn(x, y)) + kc (CFn

(x, y)− CBn
(x, y))

Where kα and kc are constants, these background and
foreground weights iteratvely improve α(x, y) by remov-
ing the background artifacts in the unknown region to better
segment the foreground and background α. The foreground
weights WFn(x, y) are clipped at 0 to prevent negative
numbers. An analysis of the foreground and background
weights shows that when the foreground consistency mea-
sure CFn

is smaller than the background consistency mea-
sure CBn

, the foreground data weight WFn
increases while

the background data weight WBn decreases. As a result
αn+1(x, y) becomes closer to 1 compared to αn(x, y). Ad-
versely, αn+1(x, y) becomes closer to 0 if CBn

is larger
than CBn

.

With this step, we can now update α(x, y) iteratively un-
til convergence until the optimal α(x, y) matte is computed
for the image to create a seamless smooth segmentation be-
tween the foreground and the background image.

6. Results
Sample images from my implementation are included in

the submission folder as well as in this paper as well. The
sample images include:

• The image captured with the RGB color-filtered aper-
ture.

• The corresponding depth map

• The trimap

• The original α matted image

• The optimized α matted image

• The foreground disparity dF image and the back-
ground disparity image dB

• The foreground image placed on a different back-
ground

• The image with a change of focus between the fore-
ground and background.

My code was written in the Python programming lan-
guage. I used images captured by myself along with images
captured from the original author of the paper to compare
my results.

5

The parameters that I used in my implementation are as
follows:

• ks = 0.1

• kα = 0.01

• kc = 0.02

• Varied the estimated disparity range from -5 to 10

• 20 iterations for converge for the Algorithm 1

The window size for my implementation was 10 × 10
with a stride of 10. The results of my implementation was
similar to the original paper in terms of computing the local
depth-map. I could not find an energy minimization frame-
work that utilized graph-cuts in python that could effec-
tively compute an accurate depth-map. Therefore, I utilized
the original source code to compute the global depth-map
for an image.

I noticed that although my implementation of computing
the optimal α matte worked effectively, in some regions the
background was included in the α matte. However I was
still able to compute many post editing effects on the image.

[Figure 5] and [Figure 9-13] shows a sample image from
capture to post edit.

7. Limitations
For the overall research, the limitation of course is cap-

turing an image that is strictly either red, green, or blue
when capturing the image using the color-filtered aperture.
During this issue, the algorithm cannot compute depth from
misalignment because misalignment cannot be computed
through one channel. Combining depth from defocus meth-
ods could help in this case or even using a neural network
with trained data on depth from defocus can help in these
situations.

Using color filters in the aperture of the lens also de-
creases the amount of incident light being received to the
camera sensor which requires an increase in the aperture
size which increases more defocus.

Matting does not do very well in which the foreground
and background colors are similar. I noticed this when at-
tempting to extract the matte from a brown toy bear against
a brown wall.

My personal limitations during my implementation was
initially the color-filtered aperture. The quality of the gel
filter was low and scratched very easily when attempting
to put it together. Therefore it created a very noisy image
when captured.

I also could not get a perfect fit of the color-filtered aper-
ture inside of the lens of the DSLR camera and as a result I
had to tape it and be very difficult. I believe this shifted the
blue position of the color filter which contributed the lack

of a right-shift in the blue direction. However, I was still
able to compute decent depth mapping and alpha matting in
certain instances with my implementation.

8. Conclusion
In conclusion, for this project, I used a color-filtered

coded aperture to compute depth from color misalignment
and further used an optimized α matting optimization algo-
rithm to segment the image between foreground and back-
ground. By arranging the square RGB color filters in an ar-
rangement on the lens aperture such that there is a right-shift
in the red channel, up-shift in the green channel, and left-
shift in the blue direction, depth from image misalignment
can be computed. This approach is much better than other
approaches for extracting depth because this measure cap-
tures depth from a single exposure, it is inexpensive, easy to
build, as well as compact. There can be many improvements
to this method however. One is to alter the arrangement of
the color-filter aperture or even utilizing different colors to
represent different wavelengths. In fact, many current stud-
ies are experiment with different methods of using various
color filters to extract depth from a single exposure.

References
[1] Y. Amari and E. H. Adelson. Single-eye range estima-

tion by using displaced apertures with color filters. In
Proceedings of the 1992 International Conference on
Industrial Electronics, Control, Instrumentation, and
Automation, pages 1588–1592 vol.3, 1992. 1

[2] Yosuke Bando, Bing-Yu Chen, and Tomoyuki Nishita.
Extracting depth and matte using a color-filtered aper-
ture. ACM Trans. Graph., 27(5), Dec. 2008. 3

[3] Anat Levin, Rob Fergus, Frédo Durand, and William T.
Freeman. Image and depth from a conventional cam-
era with a coded aperture. ACM Trans. Graph.,
26(3):70–es, July 2007. 1

[4] A. Levin, D. Lischinski, and Y. Weiss. A closed-
form solution to natural image matting. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
30(2):228–242, 2008. 3, 5

[5] I. Omer and M. Werman. Color lines: image spe-
cific color representation. In Proceedings of the 2004
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, 2004. CVPR 2004., vol-
ume 2, pages II–II, 2004. 2

[6] Jue Wang and Michael Cohen. Optimized color sam-
pling for robust matting. pages 1–8, 07 2007. 4

6

9. Appendix

This appendix will include comparisons of my imple-
mentation to that of the original paper in terms of trimap,
original matting, and matting optimization. This section
will also include post editing effects after obtaining the op-
timal matte for an image.

Figure 5: Dog toy example captured with color-filtered
aperture.

Figure 6: Left - Author’s Trimap. Right - My Trimap.

Figure 7: Left - Author’s initial matte. Right - My initial
matte.

Figure 8: Left - Author’s optimized matte. Right - My opti-
mized matte.

9.1. Post-Editing Effects

Different Background

Figure 9: Image captured with color-filtered aperture.

Figure 10: Segmented Image using my implementation of
the Matting Optimization Algorithm

Figure 11: Focused image placed on beach background.

7

Artificial Aperture

Figure 12: Background blurred with human in the focus
plane.

Figure 13: Foreground blurred with background in the focus
plane.

9.2. Construction of the Color-Filtered Aperture

Figure 14: Construction of the Color-Filtered Aperture

8

